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bstract

Hybrid renewable energy systems are expected to become competitive to conventional power generation systems in the near future and, thus,
ptimization of their operation is of particular interest. In this work, a hybrid power generation system is studied consisting of the following main
omponents: photovoltaic array (PV), electrolyser, metal hydride tanks, and proton exchange membrane fuel cells (PEMFC). The key advantage of

he hybrid system compared to stand-alone photovoltaic systems is that it can store efficiently solar energy by transforming it to hydrogen, which
s the fuel supplied to the fuel cell. However, decision making regarding the operation of this system is a rather complicated task. A complete
ramework is proposed for managing such systems that is based on a rolling time horizon philosophy.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Over the last few years, the limited reserves in conventional
uels like oil and the increasing interest of the public in the
rotection of the environment, have led the research commu-
ity to seek for alternative Renewable Energy Sources (RES).
pecial emphasis has been given on the development and imple-
entation of fuel-cell systems, for both academic purposes and

ndustrial applications. Fuel cells may be considered as continu-
us chemical reactors which convert fuel and oxidant chemical
otential into electrical energy. The key advantages of fuel cells
ompared to the conventional electrical power generation tech-
ologies are: higher efficiency, especially when the waste heat
s used for co-generation, quiet operation suitable for residen-
ial applications, and almost zero levels of produced pollutant
ases. These advantages are due to the fact that power genera-
ion in fuel cell systems is not based on combustion techniques

nd temperature gradients. Thus, the limitations imposed by the
econd law of thermodynamics on the operation of fuel cells
re much less severe than the limitations imposed on conven-
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ional energy conversion systems, which are traditionally used
or power generation. The most important drawback concerning
uel cell technology is that the basic fuel they use (hydrogen)
oes not exist free in nature [1].

A mature technology of electrical power generation from
ES is the photovoltaic (PV) technology, which is character-

zed by zero emissions of pollutant products but, also, by low
fficiency levels. However, low efficiency should not be consid-
red as a major disadvantage, due to the zero cost of solar energy.
he main disadvantage of the PV technology is that availability
f solar energy is limited to daylight periods and depends on the
eographical location and the weather conditions. It is obvious
hat solar energy cannot be stored, unless it is transformed to
nother type of energy. Furthermore, the accurate prediction of
olar energy distribution is not feasible over a long future time
orizon [2].

In order to overcome the aforementioned limitations, the con-
ept of combining RES with hydrogen technologies emerged;
nd, systematic studies of this innovative type of combined sys-
ems appeared in the early 90 [3]. The term “hybrid power

eneration system” refers to all systems that combine differ-
nt energy technologies (RES, Hydrogen, Biomass etc.) in
rder to meet the required electrical and thermal loads of the
onsumer.

mailto:hsarimv@chemeng.ntua.gr
dx.doi.org/10.1016/j.jpowsour.2007.11.067


328 P.L. Zervas et al. / Journal of Power

Nomenclature

Ai anisotropy index
Cost cost for purchasing electricity from the grid

(D kWh−1)
CostCool cost per unit volume of H2 for removing heat

from the hydride tanks (D Nm−3)
CostHeat cost per unit volume of H2 for adding heat to

the hydride tanks (D Nm−3)
CS energy demand (kW)
eff inverter efficiency (%)
EFG electricity from the grid (kW)
ELIn electrolyzer input power (kW)
ELOut hydrogen production rate from the electrolyzer

(Nm3 h−1)
ETG electricity to the grid (kW)
f factor used to account for horizon brightening
FCIn fuel cell hydrogen consumption (Nm3 h−1)
FCOut fuel cell power generation (kW)
GSIT global solar irradiance on tilted surface
Ib beam irradiance (kW m−2)
Id diffuse irradiance (kW m−2)
Inv hydrogen stored in hydride tanks (Nm3)
INVIn inverter input power (kW)
INVOut inverter output power (kW)
GSI global solar irradiance (kW m−2)
GSIT global solar irradiance on tilted surface (kW m−2)
Price profit from selling electricity to the grid

(D kWh−1)
PDir direct transferred power (kW)
PVOut photovoltaic output power (kW)
PVsurface net surface area of the photovoltaic array (m−2)
Rb ratio of the beam irradiance on the tilted surface

of the photovoltaic array to the beam irradiance
on the horizontal surface

Tamb ambient temperature (◦C)

Greek symbols
β slope of the photovoltaic array (◦)
ρg ground reflectance

Abbreviations
AGGSI adjusted Gaussian global solar irradiance
FC fuel cells
GSI global solar irradiance
MINLP mixed integer non linear programming
MPC model predictive control
NNM neural network model
PEM proton exchange membrane
PV photovoltaic
RBF radial basis function
RES renewable energy sources
RESHS renewable energy system with hydrogen storage
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Many researchers have focused their studies on such systems
y following three main directions: (a) experimental studies
n established systems; (b) simulation and optimization of
heir operation and (c) real time control. A number of stud-
es [4–7] present the experimental experience which was gained
uring the operation of hybrid systems (solar-hydrogen, wind-
ydrogen) in pilot scale. Representative references along the
econd direction, on the other hand, are also available [3,8–17].
antarelli and Macagno [8], analyzed a solar-hydrogen system
or a residential building in the Alps. The purpose of that system
as to satisfy the complete demand in electrical energy and part
f the consumer heat demand. Kelouwani et al. [9] developed a
ynamic model for a stand-alone wind/solar-hydrogen system
hereas Korpaas et al. [10] proposed a method for scheduling

nd operation of wind power plants in electricity markets. Indica-
ive studies concerning the simulation and the optimization (in
erms of choosing the optimal main components for establishing
he whole system) of a renewable energy system with hydro-
en storage (RESHS) are given in references [11–17]. Finally,
ertain references [18–20] present different methodologies of
ontrolling hybrid renewable energy power generation systems
or given load and meteorological conditions.

In this study, a novel framework is proposed for the real-time
peration optimization of a solar-hydrogen power generation
ystem. The framework is built in several steps: In the first step,
neural network model (NNM) for predicting global solar irradi-
nce (GSI) distribution on horizontal surfaces is developed. Next
tep is the estimation of the electrical energy produced by the PV
rray. Then a model is developed that describes realistically the
erformance and the limitations of the hybrid system. Finally, the
olling horizon fundamental principle of Model Predictive Con-
rol (MPC) is used for developing an optimal decision strategy.
n particular, an optimization problem is formulated based on the
iscretization of a future prediction horizon, which determines
he optimal values of the decision variables at each discrete time
nstance. The optimization problem is reformulated and solved
t each particular time instance, thus allowing the model to be
pdated with new information as the process progresses in time.

The rest of the paper is structured as follows: The next section
escribes the hybrid energy system that is studied in this work.
ection 3 presents step-by-step the development of the decision
aking framework, from the generation of the GSI prediction
odel to the formulation of the complete optimization prob-

em which provides the optimal values of the decision variables.
ection 4 presents simulated results of the proposed system for
typical household and illustrates how the cost for purchasing

lectrical energy can be reduced. Finally, the paper ends with
he concluding remarks of Section 5.

. System description

A detailed schematic of the particular hybrid system is shown
n Fig. 1. The notation used in this diagram and throughout the

est of the paper is explained in the Nomenclature.

The main components of the RESHS are the Photovoltaic
rray (PV), the Electrolyzer, the Metal Hydride Tanks, the Pro-

on Exchange Membrane Fuel Cells (PEMFC) and the inverter.
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Fig. 1. Configuration o

he system operates as follows: the electrical energy generated
rom the PV may either supply the electrolyzer – in order to pro-
uce hydrogen—or cover directly the consumer requirements.
he hydrogen produced is stored in metal hydride tanks con-
ected to a fuel cell stack. Operation of the fuel cells produces
lectrical energy, which is used to satisfy part or all of the con-
umer needs. Additionally, the system gives the opportunity to
urchase electricity from the grid or sell electricity to the grid.

. Development of the optimization procedure

In the first step, a NNM for predicting the GSI distribution
n horizontal surfaces is developed. Next step is the estimation
f the electrical energy produced by the PV array. Then a model
s developed which realistically describes the performance and
he limitations of the hybrid system. Finally, the rolling horizon
undamental principle of MPC is used for designing an optimal
ecision strategy.

.1. Local prediction of the global solar irradiance

Prediction of GSI is essential for the proper design of build-
ngs and solar energy systems. In particular, as far as PV systems
re concerned, estimation of GSI and of its components (beam,
iffuse, and albedo irradiance) is necessary for sizing purposes
2]. In the optimization framework described in this paper, pre-
iction of GSI locally (where the hybrid system lies) is crucial,
ecause it provides the necessary information for estimating the
V power generation over a future horizon. GSI is predicted
sing a novel methodology that is based on neural network tech-
ology and, in particular, on the Radial Basis Function (RBF)
eural network architecture [21].

The GSI daily distribution is approximated by a Gaussian-
ype function. The RBF neural network is used to predict the
arameters of the Gaussian-function (amplitude and width),
sing the weather state and the daylight duration as input vari-
bles. The weather conditions are categorized into discrete

tates, whereas the daylight duration is represented in daylight
enths. The main meteorological parameter that is used to clas-
ify the weather state is the presence and the type of clouds.
n accordance with many weather-forecast models, six different
tates were defined for the classification of cloudiness, namely:

l
r
d
a
t

olar-hydrogen system.

State 1: Rainfall
State 2: Heavy clouds
State 3: Cloudy
State 4: Partly cloudy
State 5: Few clouds
State 6: Clear

Fig. 2 presents characteristic daily solar irradiance distri-
utions for all six weather states. The NNM is developed by
pplying the fuzzy means RBF training algorithm [22] on a
atabase which contains local observations of the input vari-
bles (weather condition and the daylight duration) as well as the
arameters of the Gaussian function over a period of time (one
alendar year is strongly recommended). A correction method-
logy for the two tails of the Gaussian function improves further
he accuracy of the produced model. The prediction model that
s finally developed is named adjusted Gaussian Global solar
rradiance model (AGGSI). This mathematical model is used
o provide reliable future predictions of the daily GSI distribu-
ions on horizontal surfaces, given only the weather state forecast
nd the daylight duration. The procedure for generating an esti-
ate of the GSI distribution for a particular day is presented

raphically in Fig. 3 and is described in details in [21].

.2. Estimation of the electrical power generation of the PV
rray

Assuming that the model described in the previous subsection
s available, the clearness index can be calculated as the ratio of
he GSI to the extraterrestrial irradiance. The latter is computed
hrough astronomical and geographical data, given the solar con-
tant, the day-of-year and the time-of-day. The components of
SI on the horizontal plane (beam irradiance, Ib and diffuse irra-
iance, Id) are estimated next, using a correlation equation which
xpresses the diffuse fraction (ratio of the diffuse irradiance to
he GSI) as a function of the clearness index. Among several
quations that are available in the literature, the Orgill and Hol-
ands [23] correlation was selected as the most reliable for the

egion of Athens, Greece. In order to estimate Global Solar Irra-
iance on Tilted surface (GSIT), it is necessary to employ three
dditional parameters: (a) the geometric factor, Rb, defined as
he ratio of beam irradiance on the tilted surface of the PV array
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Fig. 2. Characteristic daily GSI d

o beam irradiance on the horizontal plane; (b) the anisotropy
ndex, Ai, which is a measure of the atmospheric transmittance
f beam irradiance and is defined as the ratio of beam irradiance
o the extraterrestrial irradiance, and (c) the modulating factor,
, which is used to account for “horizon brightening” and is cal-
ulated as the square root of the beam irradiance to GSI ratio.
iven the ground reflectance ρg, and the slope of the PV array
, GSIT can be estimated through the following equation ([2],
2.16):

SIT = (Ib + Id Ai)Rb + Id(1 − Ai)

(
1 + cos β

)

2

×
(

1 + f sin3
(

β

2

))
+ GSI ρg

(
1 − cos β

2

)
(1)

Fig. 3. The proposed algorithm for predicting the daily GSI distribution.
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utions for all six weather states.

Finally, an empirical model is developed which expresses
he photovoltaic power generation (PVOut) as a function of
SIT and the ambient temperature (Tamb), using historical data.
he recorded measurements were collected during two years of
peration of the Polycrystalline–Si PV arrays integrated on the
outhern façade and the roof of the NTUA Chemical Engineer-
ng Building [24]. The above data set was used to produce an
mpirical model which correlates the aforementioned quantities.
ur study showed that the following linear equation provides an

xcellent correlation for the array DC power generation:

VOut = (0.128 GSIT − 0.239 × 10−3 Tamb) × PVsurface

(2)

here PVsurface is the net surface area (not including the frames
f the panels) of the PV array. The units of the Tamb factor are
n (kW m−2 ◦C−1).

The above equation was developed and validated using a
andom partition of the available data into a training set and
validation set in a ratio 75%:25%. Only the training data were
tilized for the development of the model and the rest of the data
ere used for validation purposes. The coefficient of determi-
ation R2 (0.9909) corresponding to the validation data set is
epresentative of the high correlation between experimental and
redicted values. In order to show that the success of the model
as not the result of a chance correlation, 100 different models
ere developed based on 100 different random partitions of the
ata into training and validation sets. Robustness of the model
as clearly illustrated, since the coefficients of determination
2 were over 0.989 for all 100 partitions.

In conclusion, PVOut can be predicted locally over a future
ime horizon given only standard weather forecast information
weather state and ambient temperature). According to the pro-

uced mathematical model, the effect of the ambient temperature
n the PV performance is negative (i.e when this temperature
ncreases, the efficiency of the array drops). This observation
grees with the results that have been reported in the litera-
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Fig. 4. Estimation o

ure (cf. [2], ch. 23). Fig. 4 illustrates the procedure used for
stimating the PV power generation over a future time horizon.

.3. Estimation of the inverter efficiency

The inverter efficiency is a function of the normalized input
ower, i.e. the ratio of the inverter input power to the nominal
nput capacity. However, for normalized input power greater than
5%, the efficiency for most commercial inverters is close to 0.9,
s it is verified by the manufacturer specifications. In our model,
e assume that the inverter efficiency is constant over the entire

ange of normalized input power. This assumption is also used in
he popular TRNSYS simulator [25]. In order to compute exper-
mentally an estimate of the inverter efficiency, we used again
istorical data that were collected over the course of two years
peration from a commercial inverter located in the Solar Engi-
eering Unit of Chemical Engineering School at NTUA [24].
he estimated efficiency was found equal to 89.3%. The result
as validated using the same procedure that was described in

he previous subsection, i.e. by partitioning the data into train-
ng and validation sets in a ratio 75%:25%. We generated 100
ifferent random partitions and in all of them the coefficient of
etermination R2 was over 0.99.

.4. Development of the mass and electrical energy balance

The two main processes of the hybrid system occur in the
lectrolyzer and the fuel cells, while the hydride tanks serve
s storage units. The inverter efficiency is also taken into
ccount in the development of the equations that are presented
n this subsection. Using the notation CS(k), EFG(k), ELIn(k),
LOut(k), ETG(k) FCIn(k), FCOut(k), INVIn(k), INVOut(k),
Dir(k), PVOut(k), to denote the integrated values of the vari-
bles introduced in Fig. 1 over the length of a particular time
eriod k and the notation Inv(k) for the hydrogen inventory level
t the end of period k, we can write the relevant equations.

.4.1. Electrolyzer and fuel cell performance equations

Manufacturers of electrolyzers provide the necessary data

o generate equations that express the power consumed by the
lectrolyzer as a function of the produced rate of hydrogen.
imilarly, for fuel cell systems equations can be developed that

e

power generation.

elate the produced power with the consumed rate of hydrogen.
hese equations take into account the parasitic loads, which
re due to the auxiliary subunits in each particular system. The
quations differ between manufacturers, so at this point we use
eneric functions to denote the existence of such mathematical
elationships.

LIn(k) = L1(ELOut(k)) (3)

COut(k) = L2(FCIn(k)) (4)

.4.2. Hydrogen mass balance
The hydrogen inventory level at the end of period k is equal

o the inventory level at the end of the previous time period, plus
he amount of hydrogen produced by the electrolyzer during
eriod k minus the quantity of hydrogen consumed by the fuel
ell during the same period.

nv(k) = Inv(k − 1) + ELOut(k) − FCIn(k) (5)

.4.3. Overall electrical energy balance
The overall electrical energy balance takes into account all the

ifferent areas in the system where energy is generated or con-
umed. In order to arrive to this equation, we first write electrical
nergy balance equations at nodes 1, 2, 3, which are indicated
n Fig. 1.

Energy balance at node 1 :

PVOut(k) + EFG(k) = ELIn(k) + PDir(k) (6)

nergy balance at node 2 : PDir(k) + FCOut(k) = INVIn(k)

(7)

nergy balance at node 3 : INVOut(k) = CS(k)+ETG(k) (8)

If we additionally assume a constant efficiency inverter eff,
s indicated in the previous subsection, i.e.

NVOut(k) = eff × INVIn(k) (9)

hen from Eqs. (6)–(9) we can easily derive the following overall

lectrical energy balance equation.

eff × (PVOut(k) + EFG(k) + FCOut(k) − ELIn(k))

= CS(k) + ETG(k) (10)
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.5. Formulation of the optimization problem

MPC has recently advanced to a popular control methodology
or industrial and process applications. Its wide adoption from
he industry is largely based on the inherent ability of the method
o handle efficiently constraints and uncertainties in multivari-
ble dynamical systems. MPC is based on the following simple
dea: at each discrete time instance the control action is obtained
y solving on-line a finite-horizon open-loop optimal control
roblem, using the current state of the system as the initial state.
finite-optimal control sequence is obtained, from which only

he first element is actually applied to the system. The procedure
s repeated after each state transition.

The fundamental rolling horizon principle of MPC is used in
his work to design an optimal-decision strategy for the RESHS.
he model developed in the previous subsection is extended to
ccount for the future time periods, while the estimated profiles
f the electrical energy produced by the PV array and the energy
emand provide the input information. An optimization prob-
em is formulated based on the discretization of the future time
orizon. The solution of the optimization problem provides the
ptimal values of the decision variables over the future horizon.
he key decision variables are: the energy which is supplied to

he electrolyser, the energy purchased or sold to the grid dur-
ng each future time period, and the quantity of hydrogen stored
n the hydride tanks at the end of each time period. The adop-
ion of the rolling horizon principle means that only the optimal
alues associated with the first future time period are actually
pplied to the system. The model is updated with new informa-
ion as the process progresses with time and the optimization
roblem is reformulated and solved at each particular discrete
ime instance.

Assuming a number of P equally spaced future time inter-
als, the precise formulation of the optimization problem is as
ollows:

Objective function:

in
P∑

i=1

[
EFG(k + i) × Cost(k + i) − ETG(k + i) × Price(k + i)

+Inv U(k + i) × CostCool + Inv D(k + i) × CostHeat

]

(11)

Constraints:

If Inv(k + i) − Inv(k + i − 1) ≥ 0

then Inv U(k + i) = [Inv(k + i) − Inv(k + i − 1)],

i = 1, ..., P

(12)

If Inv(k + i) − Inv(k + i − 1) < 0

then Inv D(k + i) = [Inv(k + i − 1) − Inv(k + i)],

i = 1, ..., P

(13)

LIn(k + i) = L1(ELOut(k + i)), i = 1, ..., P (14)

COut(k + i) = L (FCIn(k + i)), i = 1, ..., P (15)
2

Inv(k + i) = Inv(k + i − 1) + ELOut(k + i) − FCIn(k + i),

i = 1, ..., P (16)

H
g
fl
n

Sources 181 (2008) 327–338

eff × (PVOut(k + i) + EFG(k + i) + FCOut(k + i)

−ELIn(k + i)) =
CS(k + i) + ETG(k + i), i = 1, ..., P

(17)

f EFG(k + i) > 0 then ETG(k + i) = 0, i = 1, ..., P

(18)

If ETG(k + i) > 0 then EFG(k + i) = 0,

i = 1, ..., P (19)

Eq. (11) is the objective function to be minimized, which
ctually represents the cost for purchasing electricity during the
uture time horizon minus the corresponding profit of selling
lectricity to the grid. Cost(k + i) and Price (k + i) represent the
ost per unit and profit per unit of purchasing/selling electricity
rom/to the grid within time period k + i. Thus, the system is
ble to take into account situations where electricity prices vary
rom period to period (consider for example the different day
nd night electricity rates). The objective function also takes into
ccount the cost for removing heat from the hydride tanks during
ddition of hydrogen and the cost for adding heat to the tanks
uring extraction. The cost is considered proportional to the
mount of hydrogen InvU(k + i)/InvD(k + i) added to or extracted
rom the hydride tanks. In particular the amount of hydrogen
dded during a time interval is multiplied by CostCool, while the
mount of hydrogen removed is multiplied by CostHeat, where
ostCool and CostHeat represent the cost per unit volume of
ydrogen for removing/adding heat to the hydride tanks. As far
s the constraints are concerned, Eqs. (12) and (13) compute
he amounts of hydrogen added or subtracted from the hydride
anks during time intervals, which are used in the objective func-
ion. Eqs. (14)–(17) are extensions of Eqs. (3)–(5), (10) for the
ntire future time horizon. Eqs. (18) and (19) prevent the system
rom purchasing and selling electrical energy to the grid dur-
ng the same time interval. In addition to the above constraints,
he variables are bounded between upper and lower limits to
ccount for process limitations. PVOut(k + i), ELin(k + i), ELOut
k + i), FCIn(k + i) and FCOut(k + i) are bounded from above by
he production capacities of the PV array, the electrolyzer and
he fuel cell system, while Inv(k + i) is bounded from above by
he storage capacity of the hydride tanks. All the variables are
bviously bounded from below by zero. Alternatively, we can
mpose greater-than-zero lower bounds to prevent the system
omponents from operating at very low production rates and
he hydrogen inventory level from going below a safe threshold
alue. Additional constraints may be included in the optimiza-
ion problem, according to each particular situation.

Remark: The optimization problem described by Eqs.
11)–(19) and the upper and lower bounds on the decision
ariables is a complex nonlinear programming problem. Eqs.
12)–(13) and (18)–(19) have been presented in an intuitive form.

owever insertion of the if-then statements in mathematical pro-
ramming solvers is not allowed or may cause computational
ows. The same equations can be formulated so that they do
ot make use of if-then statements, by introducing sets of binary
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ELIn(k) = 3.348 ELOut(k) + 1.367 ln

(
ELOut(k)

104.621

)

+ 3.845 × 10−5 ELOut(k)2 (22)
Fig. 5. Formulation of the optimi

ariables. In particular, Eqs. (12) and (13) can be formulated as
ollows:

Inv(k + i) − Inv(k + i − 1) = Inv U(k + i) − Inv D(k + i),

i = 1, ..., P

Inv U(k + i) ≤ M1 × IC(k + i), i = 1, ..., P

Inv D(k + i) ≤ M1 × IH(k + i), i = 1, ..., P

IC(k + i) + IH(k + i) = 1, i = 1, ..., P
(20)

here M1 is a fixed big positive number (the storage capacity of
he hydride tanks) and IC(k + i), IH(k + i), I=1,. . .,P are binary
ariables.

Similarly, Eqs. (18) and (19) can be written in the following
orm

EFG(k + i) ≤ M2 × IP(k + i), i = 1, ..., P

ETG(k + i) ≤ M2 × IS(k + i), i = 1, ..., P

IP(k + i) + IS(k + i) = 1, i = 1, ..., P

(21)

here M2 is a fixed big positive number (an upper bound on
he amount of energy that may be purchased/sold from/to the
rid during a time interval) and IP(k + i), IS(k + i), i = 1,. . .,P are
dditional sets of binary variables.

Using the formulations described by Eqs. (20) and (21) in
lace of Eqs. (12)–(13) and (18)–(19) a Mixed Integer Nonlinear
rogramming problem (MINLP) is generated. The problem is
olved using GAMS [26], which is a powerful commercial mod-
lling language. The formulation of the optimization problem is
escribed graphically in Fig. 5.

. Results

In this section, simulation results are presented, concerning

he application of the proposed method in optimizing the perfor-

ance of a RESHS, which is used to cover the energy needs of a
ypical household located in Athens, Greece. Based on recorded
ata, reference energy consumption daily profiles were created
problem applied to the RESHS.

or each month. Fig. 6 shows the reference profile for October,
hich will be used for the simulations that follow in the sequel.
Future predictions of the electrical energy produced by the PV

rray are based on a GSI prediction model, which was developed
s described in Section 3.2. For the development of the model, we
sed data that have been recorded over the course of two years by
he meteorological station located at the NTUA campus, Athens,
reece. Fig. 7 shows the prediction of the PVOut three-day-
rofile available at the beginning of the simulation. The PVOut
rediction corresponds to the sequence is 4 → 5 → 4, i.e. partly
loudy weather conditions for the first day, few clouds conditions
or the second day and partly cloudy conditions for the third day.
he equations concerning the electrolyzer and the fuel cells have
een provided by a manufacturer located in Greece [27]. The
quations take into account the parasitic loads that are present
ue to the auxiliary subunits in each particular system.
Fig. 6. Reference load profile for October reference.
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Fig. 7. Prediction of the PV output three-day-profile.

Table 1
Hybrid system specifications

First scenario Second scenario

PV array 4 kWp 4 kWp
Electrolyzer 0.25 Nm3 h−1 0.5 Nm3 h−1
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uel cell stack 1.2 kW 1.2 kW
etal hydride tanks 5 Nm3 5 Nm3

FCOut(k) = −0.273 × 10−9 FCIn (k)4

+7.726 × 10−7 FCIn (k)3−
0.916 × 10−3 FCIn (k)2 + 1.745 FCIn (k)

(23)

As explained in Section 3.3 the inverter efficiency is assumed
onstant and equal to 89.3%. The cost for purchasing electrical
nergy is 0.09 D kWh−1 whereas it is assumed that the profit
rom selling electrical energy to the grid is 0.05 D kWh−1. A
ower bound of 1 Nm3 (20% of the hydride tanks storage capac-
ty) is imposed on the hydrogen inventory level. Due to the fact
hat we use hydride tanks of small sizes in our simulations, the
ost for removing or providing heat to the tanks is assumed neg-
igible and therefore that parameters CostCool and CostHeat are
et equal to zero.

Two scenarios regarding the specification of the RESHS were
imulated. The particular details are summarized in Table 1
hich shows the production capacities of the three main pro-
esses (PV array, electrolyzer, fuel cell) and the storage capacity
f the metal hydride tanks. The only difference between the two
cenarios is the maximum production rate of the electrolyzer,
hich is lower in the first scenario. As initial and final values

t
w
i
p

able 2
urchased/sold energy and objective-function value using deterministic and updated

eterministic schedule using predicted PVOut and CS temporal profiles
eterministic schedule using true PVOut and CS temporal profiles
pdated schedule using true PVOut and CS temporal profiles
Sources 181 (2008) 327–338

or the hydrogen inventory level, 50% and 20% of the storage
apacity were assumed in both scenarios.

Fig. 8 presents graphically the solutions of the optimization
roblems which were formulated for the two scenarios. The solu-
ions are presented in the form of optimal profiles (plots (a)–(h))
f all input and output variables over the future time horizon
f 72 h. The first scenario is represented by green lines and the
econd scenario by blue lines.

Regarding the first scenario, we notice that during the hours
f peak generation of electrical energy from the PV array, the
lectrolyzer operates close to its maximum production rate. Dur-
ng the same period, electricity from the grid is zero whereas the
urplus is sent to the grid. Furthermore, a gradual filling of the
anks with hydrogen is observed due to the operation of the elec-
rolyzer. This inventory build-up is used for producing electricity
n the fuel cell at subsequent periods when there is high energy
emand but low or zero generation of electrical energy from the
V array. So, in the evening hours, when energy demand is high
ut solar energy is no longer available, the demand is mainly ful-
lled by the fuel cells, while small amounts of electrical energy
re purchased from the grid. Comparing the optimal profiles of
he two scenarios, it is clear that the specification is critical for
he performance of the RESHS. Due to the increased produc-
ion capacity of the electrolyzer, the cost for purchasing electrical
nergy from the grid is lower in the second scenario. Table 2 sum-
arizes the results for the first scenario regarding the amounts

f energy that are purchased from the grid or sold throughout
he entire time horizon and the corresponding objective function
alue.

In the results presented so far, we have assumed that the tem-
oral profiles of the input variables (i.e. PVOut and CS) are
eterministic, i.e. their true values match exactly the initial pre-
ictions throughout the prediction horizon. Obviously, perfect
rediction cannot be achieved in real-life applications. In order
o examine this issue, we generated modified CS temporal pro-
les by introducing noise to the available predictions whereas
or the PVOut we used true profiles as they have been recorded
or three subsequent days in October. In particular, the value of
S(k + i), at each future time instance i = 1,. . .,P was distorted
y adding a random number, chosen from a uniform distribution
n the interval [−0.1·CS(k + i) 0.1·CS(k + i)]. Regarding the true
VOut values, the recorded data [24] for the three subsequent
ays correspond to partly cloudy (state 4), clear sky (state 6) and
eavy clouds (state 2) conditions respectively. Fig. 9 presents

he PVOut recorded data and the modified CS profile together
ith the available predictions. It is clear that as far as PVOut

s concerned, we introduce systematic error to the available
redictions, which increases with the period into the future.

decision strategies

Total energy from
the grid (kWh)

Total energy to the
grid (kWh)

Objective
function (D )

9.7808 4.9563 0.63
27.8317 17.2793 1.64
13.2176 7.9778 0.79
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Given the difference between true and predicted PVOut and
S profiles, an obvious question emerges: how might this dis-
repancy deteriorate the efficiency of the decision policy that
as obtained as the solution to the deterministic optimization
roblem? In order to answer that question, we used again the

eterministic schedule that was determined for Scenario 1, but
ow considering the true instead of the simulated PVOut and CS
emporal signals. During each time period additional shortages
f energy were satisfied by purchasing it from the grid, while

s
a
t
a

ig. 8. Decision strategy for two different scenarios of a RESHS: (a) electricity from
onsumption; (e) fuel cell production; (f) electricity to the grid; (g) direct transferred
nd blue lines, respectively). (For interpretation of the references to color in this figu
Sources 181 (2008) 327–338 335

dditional surpluses of energy were sold to the grid. The results
re shown with green lines in Fig. 10. The amounts of energy that
re purchased from the grid or sold throughout the entire time
orizon are shown in Table 2 and compared with those obtained
hen zero noise was assumed. Clearly, both quantities are con-
iderably higher when the true temporal PVOut and CS profiles
re taken into consideration. The total cost (value of the objec-
ive function) increases substantially (160%). This observation
ctually means that efficiency becomes lower when the sched-

the grid; (b) electrolyzer consumption; (c) electrolyzer production; (d) fuel cell
power and (h) inventory (scenario 1 and scenario 2 are represented by green

re legend, the reader is referred to the web version of the article.)
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Fig. 8.

le obtained from the solution of the deterministic optimization
roblem is applied to realistic situations containing noisy PVOut
nd CS temporal profiles.

In the rest of the section, we will explore the benefits of using
he rolling horizon concept for improving the decision strategy
hat has been determined so far. The rolling horizon philosophy
s based on the fact that at each discrete time instance, the formu-
ation of the optimization problem can be updated with the true
urrent state of the system (the hydrogen inventory level) and
ith more reliable predictions regarding the future PVOut and
S temporal profiles. In our particular application, we assume

hat at each time instance we know the true values of PVOut
nd CS only for the next time period, while for the rest of the
uture horizon we keep using the initial PVOut and CS predic-
ions. This assumption is rather conservative, since in real life
ituations we can most probably improve our predictions for
he entire future time horizon. However, as we will see in the

equel, our assumption is good enough for demonstrating the
ffectiveness of the rolling horizon strategy.

Following the previously described information update pro-
edure at the end of each discrete time period, the complete

f
c
u
e

Fig. 9. True and predicted temporal pr
inued ).

ptimization problem is reformulated and solved. The optimal
ontrol strategy resulting from the rolling horizon philosophy
s shown in red lines in Figure 10, where we can compare
t with the decision strategy produced by the solution to the
eterministic problem (shown in green lines). We observe
light modifications in the electrolyzer operation schedule for
he first two days and major modifications during the third
ay. For the fuel cell system considerable modifications are
bserved, which result to a quite different inventory temporal
rofile and to reduced amounts of purchased and sold elec-
ricity (see Table 2). The total cost is quite close to the one
alculated by using the predicted and not the actual PVOut
nd CS temporal profiles (there is only a 25% increase). It is
lso useful to compare this result with the cost for covering all
he consumer needs by purchasing electrical energy from the
rid, which is 3.16 D (i.e. only 25% of the consumer needs is
overed by purchasing electrical energy from the grid). There-

ore, the adoption of the rolling horizon concept can improve
onsiderably the efficiency of the hybrid system in real-life sit-
ations, where PVOut and CS predictions obviously contain
rrors.

ofiles for (a) PVOut and (b) CS.
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ig. 10. Deterministic and updated decision strategies for scenario 1 with true P
y red and green lines respectively). (For interpretation of the references to colo

. Conclusions

In this work, a complete framework for managing renew-
ble energy systems with hydrogen storage is proposed. The
ramework is built in several steps that may be summarized as
ollows:

Development of a prediction model for the GSI daily pro-
file on horizontal surfaces based on the RBF neural network
architecture;
Forecasting GSI on the tilted surface of the PV array, using
the following information: the GSI prediction on horizontal
surfaces, astronomical and geographical data and the slope of
the PV array;
Estimating the electrical energy produced by the PV array,
given the ambient temperature and the GSI on the tilted sur-
face;
Development of a model that realistically describes the per-
formance and the constraints of the hybrid system;
Formulation and solution of an on-line optimization problem
that is used as a decision making tool regarding the operation
of the system. The formulation takes into account updated
estimations of the photovoltaic power generation over a future
prediction horizon and a profile of the energy demand over
the same time horizon.

In conclusion, the proposed model may prove to be a very

seful tool for optimal decision making in hybrid power gener-
tion systems which combine RES and hydrogen technologies.
t should also be mentioned that the actual cost of all individual
omponents of such a hybrid system is continuously decreasing,

[

[
[
[

t and CS profiles (deterministic and updated decision strategies are represented
his figure legend, the reader is referred to the web version of the article.)

ince renewable energy technologies become mature. Hybrid
enewable energy systems are expected to be competitive to the
onventional power generation systems in the near future and
hus optimization of their operation is of particular interest.
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